Cargando…

A Noise Filtering Algorithm for Event-Based Asynchronous Change Detection Image Sensors on TrueNorth and Its Implementation on TrueNorth

Asynchronous event-based sensors, or “silicon retinae,” are a new class of vision sensors inspired by biological vision systems. The output of these sensors often contains a significant number of noise events along with the signal. Filtering these noise events is a common preprocessing step before u...

Descripción completa

Detalles Bibliográficos
Autores principales: Padala, Vandana, Basu, Arindam, Orchard, Garrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844986/
https://www.ncbi.nlm.nih.gov/pubmed/29556172
http://dx.doi.org/10.3389/fnins.2018.00118
Descripción
Sumario:Asynchronous event-based sensors, or “silicon retinae,” are a new class of vision sensors inspired by biological vision systems. The output of these sensors often contains a significant number of noise events along with the signal. Filtering these noise events is a common preprocessing step before using the data for tasks such as tracking and classification. This paper presents a novel spiking neural network-based approach to filtering noise events from data captured by an Asynchronous Time-based Image Sensor on a neuromorphic processor, the IBM TrueNorth Neurosynaptic System. The significant contribution of this work is that it demonstrates our proposed filtering algorithm outperforms the traditional nearest neighbor noise filter in achieving higher signal to noise ratio (~10 dB higher) and retaining the events related to signal (~3X more). In addition, for our envisioned application of object tracking and classification under some parameter settings, it can also generate some of the missing events in the spatial neighborhood of the signal for all classes of moving objects in the data which are unattainable using the nearest neighbor filter.