Cargando…

Identification of new abscisic acid receptor agonists using a wheat cell-free based drug screening system

Abscisic acid (ABA) is the main phytohormone involved in abiotic stress response and its adaptation, and is a candidate agrichemical. Consequently, several agonists of ABA have been developed using the yeast two-hybrid system. Here, we describe a novel cell-free-based drug screening approach for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nemoto, Keiichirou, Kagawa, Makiko, Nozawa, Akira, Hasegawa, Yoshinori, Hayashi, Minoru, Imai, Kenichiro, Tomii, Kentaro, Sawasaki, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844987/
https://www.ncbi.nlm.nih.gov/pubmed/29523814
http://dx.doi.org/10.1038/s41598-018-22538-9
Descripción
Sumario:Abscisic acid (ABA) is the main phytohormone involved in abiotic stress response and its adaptation, and is a candidate agrichemical. Consequently, several agonists of ABA have been developed using the yeast two-hybrid system. Here, we describe a novel cell-free-based drug screening approach for the development and validation of ABA receptor agonists. Biochemical validation of this approach between 14 ABA receptors (PYR/PYL/RCARs) and 7 type 2C-A protein phosphatases (PP2CAs) revealed the same interactions as those of previous proteome data, except for nine new interactions. By chemical screening using this approach, we identified two novel ABA receptor agonists, JFA1 (julolidine and fluorine containing ABA receptor activator 1) and JFA2 as its analog. The results of biochemical validation for this approach and biological analysis suggested that JFA1 and JFA2 inhibit seed germination and cotyledon greening of seedlings by activating PYR1 and PYL1, and that JFA2 enhanced drought tolerance without inhibiting root growth by activating not only PYR1 and PYL1 but also PYL5. Thus, our approach was useful for the development of ABA receptor agonists and their validation.