Cargando…

Experimental and theoretical study of donor-π-acceptor compounds based on malononitrile

A set of different donor-π-acceptor compounds having dicyanovinyl as the acceptor and aryl moieties as donors were synthesized by Knoevenagel condensation. The UV–visible absorption and fluorescence spectra were investigated in different solvents. The optical band gab energy (Eg) was linearly correl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zayed, Mohie E. M., El-Shishtawy, Reda M., Elroby, Shaaban A., Al-Footy, Khalid O., Al-amshany, Zahra M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845083/
https://www.ncbi.nlm.nih.gov/pubmed/29524022
http://dx.doi.org/10.1186/s13065-018-0394-5
Descripción
Sumario:A set of different donor-π-acceptor compounds having dicyanovinyl as the acceptor and aryl moieties as donors were synthesized by Knoevenagel condensation. The UV–visible absorption and fluorescence spectra were investigated in different solvents. The optical band gab energy (Eg) was linearly correlated with the Hammett resonance effect of the donor to reveal that the higher the value of Hammett resonance effect of a donor, the lower the Eg of the molecule. The photophysical data revealed that compounds M4–M6 are typical molecular rotors with fluorescence due to twisted intramolecular charge transfer. Compound M5 revealed the largest Stokes shift (11,089 cm(−1)) making it a useful fluorescent sensor for the changes of the microenvironment. The effect of substituents on the optical properties of donor-π-acceptor compounds having dicyanovinyl as the acceptor are studied using density functional theory and time-dependent density functional theory (DFT/TD-DFT). The optical transitions are thoroughly examined to reveal the impact of subtituents on both absorption and fluorescence, mainly through the modification of the structure in the excited state. The theoretical results have shown that TD-DFT calculations, with a hybrid exchange–correlation and the long-range corrected density functional PBEPBE with a 6–311++G** basis set, was reasonably capable of predicting the excitation energies, the absorption and the emission spectra of these molecules.