Cargando…
Monotonicity of the ratio of modified Bessel functions of the first kind with applications
Let [Formula: see text] with [Formula: see text] be the modified Bessel functions of the first kind of order v. In this paper, we prove the monotonicity of the function [Formula: see text] on [Formula: see text] for different values of parameter p with [Formula: see text] . As applications, we deduc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845093/ https://www.ncbi.nlm.nih.gov/pubmed/29568211 http://dx.doi.org/10.1186/s13660-018-1648-4 |
Sumario: | Let [Formula: see text] with [Formula: see text] be the modified Bessel functions of the first kind of order v. In this paper, we prove the monotonicity of the function [Formula: see text] on [Formula: see text] for different values of parameter p with [Formula: see text] . As applications, we deduce some new Simpson–Spector-type inequalities for [Formula: see text] and derive a new type of bounds [Formula: see text] ([Formula: see text] ) for [Formula: see text] . In particular, we show that the upper bound [Formula: see text] for [Formula: see text] is the minimum over all upper bounds [Formula: see text] , where [Formula: see text] and is not comparable with other sharpest upper bounds. We also find such type of upper bounds for [Formula: see text] with [Formula: see text] and for [Formula: see text] with [Formula: see text] . |
---|