Cargando…

Monotonicity of the ratio of modified Bessel functions of the first kind with applications

Let [Formula: see text] with [Formula: see text] be the modified Bessel functions of the first kind of order v. In this paper, we prove the monotonicity of the function [Formula: see text] on [Formula: see text] for different values of parameter p with [Formula: see text] . As applications, we deduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhen-Hang, Zheng, Shen-Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845093/
https://www.ncbi.nlm.nih.gov/pubmed/29568211
http://dx.doi.org/10.1186/s13660-018-1648-4
Descripción
Sumario:Let [Formula: see text] with [Formula: see text] be the modified Bessel functions of the first kind of order v. In this paper, we prove the monotonicity of the function [Formula: see text] on [Formula: see text] for different values of parameter p with [Formula: see text] . As applications, we deduce some new Simpson–Spector-type inequalities for [Formula: see text] and derive a new type of bounds [Formula: see text] ([Formula: see text] ) for [Formula: see text] . In particular, we show that the upper bound [Formula: see text] for [Formula: see text] is the minimum over all upper bounds [Formula: see text] , where [Formula: see text] and is not comparable with other sharpest upper bounds. We also find such type of upper bounds for [Formula: see text] with [Formula: see text] and for [Formula: see text] with [Formula: see text] .