Cargando…
Characterizing and Managing Missing Structured Data in Electronic Health Records: Data Analysis
BACKGROUND: Missing data is a challenge for all studies; however, this is especially true for electronic health record (EHR)-based analyses. Failure to appropriately consider missing data can lead to biased results. While there has been extensive theoretical work on imputation, and many sophisticate...
Autores principales: | Beaulieu-Jones, Brett K, Lavage, Daniel R, Snyder, John W, Moore, Jason H, Pendergrass, Sarah A, Bauer, Christopher R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845101/ https://www.ncbi.nlm.nih.gov/pubmed/29475824 http://dx.doi.org/10.2196/medinform.8960 |
Ejemplares similares
-
Strategies for Handling Missing Data in Electronic Health Record Derived Data
por: Wells, Brian J., et al.
Publicado: (2013) -
Imputation of missing values for electronic health record laboratory data
por: Li, Jiang, et al.
Publicado: (2021) -
Characterization of genetic and phenotypic heterogeneity of obstructive sleep apnea using electronic health records
por: Veatch, Olivia J., et al.
Publicado: (2020) -
A multi-step approach to managing missing data in time and patient variant electronic health records
por: Cesare, Nina, et al.
Publicado: (2022) -
Health indicator recording in UK primary care electronic health records: key implications for handling missing data
por: Petersen, Irene, et al.
Publicado: (2019)