Cargando…
Effect of whole-body electromyostimulation and / or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial
BACKGROUND: Sarcopenic Obesity (SO) is characterized by low lean and high fat mass; i.e. from a functional aspect a disproportion between engine (muscle) and mass to be moved (fat). At present, most research focuses on the engine, but the close “cross talk” between age-associated adipose and skeleta...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845205/ https://www.ncbi.nlm.nih.gov/pubmed/29523089 http://dx.doi.org/10.1186/s12877-018-0759-6 |
Sumario: | BACKGROUND: Sarcopenic Obesity (SO) is characterized by low lean and high fat mass; i.e. from a functional aspect a disproportion between engine (muscle) and mass to be moved (fat). At present, most research focuses on the engine, but the close “cross talk” between age-associated adipose and skeletal muscle tissue inflammation calls for comprehensive interventions that affect both components alike. Protein and exercise are likely candidates, however with respect to the latter, the enthusiasm for intense and frequent exercise is rather low, especially in functionally limited older people. The aim of this study was therefore to evaluate the effect of whole-body electromyostimulation (WB-EMS), a time-efficient, joint-friendly and highly customizable exercise technology, on obesity parameters and cardiometabolic risk in men with SO. METHODS: One-hundred community-dwelling (cdw) Bavarian men ≥70 years with SO were randomly assigned to either (a) whey protein supplementation (WPS), (b) WB-EMS and protein supplementation (WB-EMS&P) or (c) non-intervention control (CG). Protein supplementation contributed to an intake of 1.7–1.8 g/kg/body mass/d, WB-EMS consisted of 1.5 × 20 min/week (85 Hz, 350 μs, 4 s of strain–4 s of rest) with moderate-high intensity. Using an intention to treat approach with multiple imputation, the primary study endpoint was total body fat mass (TBF), secondary endpoints were trunk fat mass (TF), waist circumference (WC) and total-cholesterol/HDL-cholesterol ratio (TC/HDL-C). RESULTS: After 16 weeks of intervention, TBF was reduced significantly in the WPS (− 3.6 ± 7.2%; p = 0.005) and WB-EMS&P (− 6.7 ± 6.2%; p < 0.001), but not in the CG (+ 1.6 ± 7.1%; p = 0.191). Changes in the WB-EMS&P (p < 0.001) and the WPS group (p = 0.011) differ significantly from the CG. TF decreased in the WB-EMS&P (p < 0.001) and WPS (p = .117) and increased in the CG (p = .159); WC decreased significantly in the treatment groups and was maintained in the CG. Lastly, the TC/HDL-C ratio improved significantly in the WB-EMS&P and WPS group and was maintained in the CG. Significant differences between WB-EMS&P and WPS were determined for waist circumference only (p = 0.015; TBF: p = 0.073; TF: p = 0.087; TC/HDL-C: p = .773). CONCLUSION: Moderate-high dosed whey protein supplementation, especially when combined with WB-EMS, may be a feasible choice to address obesity and cardiometabolic risk in older cdw men with SO unable or unmotivated to exercise conventionally. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT02857660; registration date: 05/01/2017. |
---|