Cargando…
An interpretable framework for clustering single-cell RNA-Seq datasets
BACKGROUND: With the recent proliferation of single-cell RNA-Seq experiments, several methods have been developed for unsupervised analysis of the resulting datasets. These methods often rely on unintuitive hyperparameters and do not explicitly address the subjectivity associated with clustering. RE...
Autores principales: | Zhang, Jesse M., Fan, Jue, Fan, H. Christina, Rosenfeld, David, Tse, David N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845381/ https://www.ncbi.nlm.nih.gov/pubmed/29523077 http://dx.doi.org/10.1186/s12859-018-2092-7 |
Ejemplares similares
-
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
por: Lin, Peijie, et al.
Publicado: (2017) -
GEMmaker: process massive RNA-seq datasets on heterogeneous computational infrastructure
por: Hadish, John A., et al.
Publicado: (2022) -
GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
por: Marini, Federico, et al.
Publicado: (2021) -
FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
por: DeTomaso, David, et al.
Publicado: (2016) -
Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists
por: Zhu, Xun, et al.
Publicado: (2017)