Cargando…
Bayesian Correction for Misclassification in Multilevel Count Data Models
Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical response is proposed. Models with a single...
Autores principales: | Nelson, Tyler, Song, Joon Jin, Chin, Yoo-Mi, Stamey, James D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845492/ https://www.ncbi.nlm.nih.gov/pubmed/29681994 http://dx.doi.org/10.1155/2018/3212351 |
Ejemplares similares
-
A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
por: Wu, Wenqi, et al.
Publicado: (2015) -
A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States
por: Chen, Jinjie, et al.
Publicado: (2022) -
Trend of Gastric Cancer after Bayesian Correction of Misclassification Error in Neighboring Provinces of Iran
por: Hajizadeh, Nastaran, et al.
Publicado: (2019) -
Measurement error and misclassification in statistics and epidemiology: impacts and bayesian adjustments
por: Gustafson, Paul
Publicado: (2003) -
Bayesian adjustment of gastric cancer mortality rate in the presence of misclassification
por: Hajizadeh, Nastaran, et al.
Publicado: (2017)