Cargando…

Cucurbitacin I Protects H9c2 Cardiomyoblasts against H(2)O(2)-Induced Oxidative Stress via Protection of Mitochondrial Dysfunction

Cucurbitacin I, a triterpenoid natural compound, exhibits various pharmacological properties, including anticancer, anti-inflammatory, and hepatoprotective properties. However, antioxidant effects of cucurbitacin I in cardiac cells are currently unknown. In the present study, we assessed the prevent...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Dong Kwon, Kim, Shang-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845511/
https://www.ncbi.nlm.nih.gov/pubmed/29682157
http://dx.doi.org/10.1155/2018/3016382
Descripción
Sumario:Cucurbitacin I, a triterpenoid natural compound, exhibits various pharmacological properties, including anticancer, anti-inflammatory, and hepatoprotective properties. However, antioxidant effects of cucurbitacin I in cardiac cells are currently unknown. In the present study, we assessed the preventive effects of cucurbitacin I against the oxidative stress in H9c2 cardiomyoblasts. To evaluate antioxidant effects of cucurbitacin I in H9c2 cardiomyoblasts, H(2)O(2)-treated H9c2 cells were pretreated with various concentrations of the cucurbitacin I. Cell viability, reactive oxygen species (ROS) production, and apoptosis were determined to elucidate the protective effects of cucurbitacin I against H(2)O(2)-induced oxidative stress in H9c2 cells. In addition, we assessed the mitochondrial functions and protein expression levels of mitogen-activated protein kinases (MAPKs). Cucurbitacin I prevented the cells against cell death and ROS production and elevated the antioxidant protein levels upon oxidative stress. Furthermore, cucurbitacin I preserved the mitochondrial functions and inhibited the apoptotic responses in H(2)O(2)-treated cells. Cucurbitacin I also suppressed the activation of MAPK proteins (extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38). Collectively, cucurbitacin I potentially protects the H9c2 cardiomyoblasts against oxidative stress and further suggests that it can be utilized as a therapeutic agent for the prevention of oxidative stress in cardiac injury.