Cargando…
Convis: A Toolbox to Fit and Simulate Filter-Based Models of Early Visual Processing
We developed Convis, a Python simulation toolbox for large scale neural populations which offers arbitrary receptive fields by 3D convolutions executed on a graphics card. The resulting software proves to be flexible and easily extensible in Python, while building on the PyTorch library (The Pytorch...
Autores principales: | Huth, Jacob, Masquelier, Timothée, Arleo, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845886/ https://www.ncbi.nlm.nih.gov/pubmed/29563867 http://dx.doi.org/10.3389/fninf.2018.00009 |
Ejemplares similares
-
Sub-Optimality of the Early Visual System Explained Through Biologically Plausible Plasticity
por: Chauhan, Tushar, et al.
Publicado: (2021) -
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation
por: Sherfey, Jason S., et al.
Publicado: (2018) -
SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron
por: Mozafari, Milad, et al.
Publicado: (2019) -
Neural variability, or lack thereof
por: Masquelier, Timothée
Publicado: (2013) -
Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics
por: Karjalainen, Tomi, et al.
Publicado: (2020)