Cargando…
Incorporating High-Frequency Physiologic Data Using Computational Dictionary Learning Improves Prediction of Delayed Cerebral Ischemia Compared to Existing Methods
PURPOSE: Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available...
Autores principales: | Megjhani, Murad, Terilli, Kalijah, Frey, Hans-Peter, Velazquez, Angela G., Doyle, Kevin William, Connolly, Edward Sander, Roh, David Jinou, Agarwal, Sachin, Claassen, Jan, Elhadad, Noemie, Park, Soojin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845900/ https://www.ncbi.nlm.nih.gov/pubmed/29563892 http://dx.doi.org/10.3389/fneur.2018.00122 |
Ejemplares similares
-
Heart rate variability and adrenal size provide clues to sudden cardiac death in hospitalized COVID-19 patients
por: Ranard, Benjamin L., et al.
Publicado: (2022) -
Identification of Endotypes of Hospitalized COVID-19 Patients
por: Ranard, Benjamin L., et al.
Publicado: (2021) -
Classification of Level of Consciousness in a Neurological ICU Using Physiological Data
por: Gomez, Louis A., et al.
Publicado: (2022) -
Deep structural brain lesions associated with consciousness impairment early after hemorrhagic stroke
por: Rohaut, Benjamin, et al.
Publicado: (2019) -
Heart rate and heart rate variability as a prognosticating feature for functional outcome after cardiac arrest: A scoping review
por: Kwon, Soon Bin, et al.
Publicado: (2023)