Cargando…

Long noncoding RNA ENSRNOG00000037522 is involved in the podocyte epithelial-mesenchymal transition in diabetic rats

Diabetic nephropathy (DN) is one of the most common complications associated with type I and II diabetes mellitus. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, and recent evidence has demonstrated that they are involved in the process of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ling, Li, Tan, Zhen, Zhang, Changning, Gui, Shuyan, Hu, Yuanyuan, Chen, Libo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846646/
https://www.ncbi.nlm.nih.gov/pubmed/29436579
http://dx.doi.org/10.3892/ijmm.2018.3457
Descripción
Sumario:Diabetic nephropathy (DN) is one of the most common complications associated with type I and II diabetes mellitus. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, and recent evidence has demonstrated that they are involved in the process of the epithelial-mesenchymal transition (EMT). In the present study, the potential functions of lncRNA ENSRNOG00000037522 during the EMT process in DN were investigated. The results identified that the level of the lncRNA ENSRNOG00000037522 was significantly increased in kidney tissues collected from rats with streptozocin (STZ)-induced DN accompanied by impairment of the glomerular podocytes. It was further demonstrated that the silencing of lncRNA ENSRNOG00000037522 by small interfering RNA transfection partially restored the podocyte function. In addition, knockdown of lncRNA ENSRNOG00000037522 repaired the damage to the podocytes via regulating vimentin, podocalyxin-like 1 and nephrin expression. In conclusion, the current results demonstrated that lncRNA ENSRNOG00000037522 serves a pivotal role in the podocyte EMT in DN.