Cargando…

Development of liposomal pemetrexed for enhanced therapy against multidrug resistance mediated by ABCC5 in breast cancer

PURPOSE: Breast cancer is the most common cancer among women. Pemetrexed, a new generation antifolate drug, is one of the primary treatments for breast cancer. However, multidrug resistance (MDR) in breast cancer greatly hampers the therapeutic efficacy of chemotherapies such as pemetrexed. Nanomedi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Fang, Yin, You, Chen, Ting, Chen, Jihui, Ge, Meixin, Lu, Yunshu, Xie, Fangyuan, Zhang, Jian, Wu, Kejin, Liu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846754/
https://www.ncbi.nlm.nih.gov/pubmed/29563790
http://dx.doi.org/10.2147/IJN.S150237
Descripción
Sumario:PURPOSE: Breast cancer is the most common cancer among women. Pemetrexed, a new generation antifolate drug, is one of the primary treatments for breast cancer. However, multidrug resistance (MDR) in breast cancer greatly hampers the therapeutic efficacy of chemotherapies such as pemetrexed. Nanomedicine is emerging as a promising alternative technique to overcome cancer MDR. Thus, pemetrexed-loaded d-alpha tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) liposomes (liposomal pemetrexed) were developed as a strategy to overcome MDR to pemetrexed in breast cancer. MATERIALS AND METHODS: Liposomal pemetrexed was developed using the calcium acetate gradient method. The cytotoxic effects, apoptosis-inducing activity, in vivo distribution, and antitumor activity of liposomal pemetrexed were investigated. RESULTS: Liposomal pemetrexed was small in size (160.77 nm), with a small polydispersity of <0.1. The encapsulation efficacy of liposomal pemetrexed was 63.5%, which is rather high for water-soluble drugs in liposomes. The IC(50) of liposomal pemetrexed following treatment with MDR breast cancer cells (MCF-7 cells overexpressing ABCC5) was 2.6-fold more effective than pemetrexed. The in vivo biodistribution study showed that the liposomes significantly accumulated in tumors 24 h after injection. The antitumor assay in mice bearing MDR breast cancer xenograft tumors confirmed the superior antitumor activity of liposomal pemetrexed over pemetrexed. It was also found that the improved therapeutic effect of liposomal pemetrexed may be attributed to apoptosis through both extrinsic and intrinsic pathways. CONCLUSION: Liposomal pemetrexed represents a potential therapeutic approach for overcoming breast cancer MDR.