Cargando…
A novel inactivated vaccine against Lawsonia intracellularis induces rapid induction of humoral immunity, reduction of bacterial shedding and provides robust gut barrier function
Porcine proliferative ileitis is a major economic burden for the swine industry, affecting growing pigs and young adult pigs. In this study, the protective efficacy of an inactivated, injectable whole-cell bacteria vaccine against L. intracellularis – Porcilis® Ileitis was evaluated under field cond...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846845/ https://www.ncbi.nlm.nih.gov/pubmed/29336925 http://dx.doi.org/10.1016/j.vaccine.2017.12.049 |
Sumario: | Porcine proliferative ileitis is a major economic burden for the swine industry, affecting growing pigs and young adult pigs. In this study, the protective efficacy of an inactivated, injectable whole-cell bacteria vaccine against L. intracellularis – Porcilis® Ileitis was evaluated under field conditions. Eighty-five, three-week-old pigs on a commercial farrow-to-finish farm were vaccinated by the intramuscular route, either with a dose of injectable vaccine, or with saline. A subset of vaccinates and control pigs were necropsied at 21 days post-challenge. Incidence and severity of ileitis were evaluated by gross and microscopic observation of ileal tissues. Colonization of the gut after challenge was examined by L. intracellularis-specific immunohistochemistry, and qPCR of ileal scrapings. Integrity of the intestinal barrier was evaluated to quantify a range of intestinal markers including secreted mucin and intestinal alkaline phosphatase, and innate immune markers including Caspase-3 and Calprotectin. A second subset of pigs was monitored for fecal shedding of L. intracellularis, until resolution of shedding. Our investigation indicated that Porcilis Ileitis provided robust protection against ileitis, reduced bacterial shedding 15-fold (p < .05) and preserved normal gut barrier function in the face of an experimental challenge with virulent L. intracellularis. |
---|