Cargando…
Dynamic light sheet generation and fluorescence imaging behind turbid media
BACKGROUND: Light sheet microscopy became a popular tool allowing fast imaging with reduced out of focus light. However, when light penetrates turbid media such as biological tissues, multiple scattering scrambles the illumination into a speckle pattern and severely challenges conventional fluoresce...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846999/ https://www.ncbi.nlm.nih.gov/pubmed/29568415 http://dx.doi.org/10.1186/s41476-018-0074-z |
Sumario: | BACKGROUND: Light sheet microscopy became a popular tool allowing fast imaging with reduced out of focus light. However, when light penetrates turbid media such as biological tissues, multiple scattering scrambles the illumination into a speckle pattern and severely challenges conventional fluorescence imaging with focused light or with a light sheet. In this article, we present generation of light sheet type illumination patterns despite scattering. METHODS: We optimize the wave-front of the incoming light to transform the speckle pattern behind the scattering layer into a light sheet within the region of interest. We utilize a fast spatial light modulator for phase modulation and a genetic optimization algorithm. The light pattern behind the scattering layer is detected via a clear detection path and acts as a feedback signal for the algorithm. RESULTS: We enabled homogenous light sheet illumination behind turbid media and enhanced the signal of fluorescent beads selectively at the desired focal plane up to eight times on average. The technique is capable to compensate the dynamic changes of the speckle pattern as well, as shown on samples consisting of living drosophila pupae. CONCLUSION: Our technique shows that not only single foci, but also a homogenous light sheet illumination can directly be created and maintained behind static and dynamic scattering media. To make the technique suitable for common biological settings, where the detection path is turbid as well, a fluorescent probe can be used to provide the feedback signal. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s41476-018-0074-z) contains supplementary material, which is available to authorized users. |
---|