Cargando…

Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy: A comparison of benefits

PURPOSE: The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: de Boer, Peter, van de Schoot, Agustinus J. A. J., Westerveld, Henrike, Smit, Mark, Buist, Marrije R., Bel, Arjan, Rasch, Coen R. N., Stalpers, Lukas J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847034/
https://www.ncbi.nlm.nih.gov/pubmed/29101415
http://dx.doi.org/10.1007/s00066-017-1224-8
Descripción
Sumario:PURPOSE: The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). METHODS: The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V(15Gy), V(30Gy), V(45Gy) and D(mean) for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. RESULTS: Both IMPT and MRI-based target tailoring resulted in significant reductions in V(15Gy), V(30Gy), V(45Gy) and D(mean) for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V(45Gy) for bowel bag was >275 cm(3) and >200 cm(3), respectively, during standard IGART alone. CONCLUSIONS: In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00066-017-1224-8) contains supplementary material, which is available to authorized users.