Cargando…

Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals

The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized [Formula: see text] -preinvex functions through...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yao, Du, Ting-Song, Wang, Hao, Shen, Yan-Jun, Kashuri, Artion
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847169/
https://www.ncbi.nlm.nih.gov/pubmed/29568210
http://dx.doi.org/10.1186/s13660-018-1639-5
_version_ 1783305700640817152
author Zhang, Yao
Du, Ting-Song
Wang, Hao
Shen, Yan-Jun
Kashuri, Artion
author_facet Zhang, Yao
Du, Ting-Song
Wang, Hao
Shen, Yan-Jun
Kashuri, Artion
author_sort Zhang, Yao
collection PubMed
description The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized [Formula: see text] -preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained.
format Online
Article
Text
id pubmed-5847169
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-58471692018-03-20 Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals Zhang, Yao Du, Ting-Song Wang, Hao Shen, Yan-Jun Kashuri, Artion J Inequal Appl Research The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized [Formula: see text] -preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained. Springer International Publishing 2018-02-21 2018 /pmc/articles/PMC5847169/ /pubmed/29568210 http://dx.doi.org/10.1186/s13660-018-1639-5 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Zhang, Yao
Du, Ting-Song
Wang, Hao
Shen, Yan-Jun
Kashuri, Artion
Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals
title Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals
title_full Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals
title_fullStr Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals
title_full_unstemmed Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals
title_short Extensions of different type parameterized inequalities for generalized [Formula: see text] -preinvex mappings via k-fractional integrals
title_sort extensions of different type parameterized inequalities for generalized [formula: see text] -preinvex mappings via k-fractional integrals
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847169/
https://www.ncbi.nlm.nih.gov/pubmed/29568210
http://dx.doi.org/10.1186/s13660-018-1639-5
work_keys_str_mv AT zhangyao extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedformulaseetextpreinvexmappingsviakfractionalintegrals
AT dutingsong extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedformulaseetextpreinvexmappingsviakfractionalintegrals
AT wanghao extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedformulaseetextpreinvexmappingsviakfractionalintegrals
AT shenyanjun extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedformulaseetextpreinvexmappingsviakfractionalintegrals
AT kashuriartion extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedformulaseetextpreinvexmappingsviakfractionalintegrals