Cargando…
Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology
Most tropical evergreen rain forests are characterised by varying degrees of precipitation seasonality that influence plant phenology and litterfall dynamics. Soil microbes are sensitive to soil water:air ratio and to nutrient availability. We studied if within-year seasonality in precipitation and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847513/ https://www.ncbi.nlm.nih.gov/pubmed/29531240 http://dx.doi.org/10.1038/s41598-018-22380-z |
Sumario: | Most tropical evergreen rain forests are characterised by varying degrees of precipitation seasonality that influence plant phenology and litterfall dynamics. Soil microbes are sensitive to soil water:air ratio and to nutrient availability. We studied if within-year seasonality in precipitation and litterfall-derived nutrient input resulted in predictable seasonal variation in soil bacterial diversity/microbial functional groups in an Amazonian forest. We characterised the spatio-temporal dynamics of microbial communities from the plot to the stand scales and related them to precipitation seasonality and spatial variability in soil characteristics. Community composition and functional diversity showed high spatial heterogeneity and was related to variability in soil chemistry at the stand level. Large species turnover characterised plot level changes over time, reflecting precipitation seasonality-related changes in soil nutrient and moisture regimes. The abundance of decomposers was highest during the rainy season, characterised also by anaerobic saprophytes and N(2)-fixers adapted to fluctuating redox conditions. In contrast, Beijerinckiaceae, likely derived from the phyllosphere, were found at higher abundances when litter inputs and accumulation were highest. We showed that in a mildly seasonal rain forest, the composition of soil microbial communities appears to be following canopy phenology patterns and the two are interlinked and drive soil nutrient availability. |
---|