Cargando…
Divergent T-cell receptor recognition modes of a HLA-I restricted extended tumour-associated peptide
Human leukocyte antigen (HLA)-I molecules generally bind short peptides (8–10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-ce...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847591/ https://www.ncbi.nlm.nih.gov/pubmed/29531227 http://dx.doi.org/10.1038/s41467-018-03321-w |
Sumario: | Human leukocyte antigen (HLA)-I molecules generally bind short peptides (8–10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-cell receptors (TCR) remains unclear. Here we show that the structures of two distinct TCRs (TRAV4(+)TRAJ21(+)-TRBV28(+)TRBJ2-3(+) and TRAV4(+)TRAJ8(+)-TRBV9(+)TRBJ2-1(+)), originating from a polyclonal T-cell repertoire, bind to HLA-B*07:02, presenting a 13-amino-acid-long tumour-associated peptide, NY-ESO-1(60–72). Comparison of the structures reveals that the two TCRs differentially binds NY-ESO-1(60–72)–HLA-B*07:02 complex, and induces differing extent of conformational change of the NY-ESO-1(60–72) epitope. Accordingly, polyclonal TCR usage towards an extended HLA-I restricted tumour epitope translates to differing TCR recognition modes, whereby extensive flexibility at the TCR–pHLA-I interface engenders recognition. |
---|