Cargando…
Mapping abiotic stresses for rice in Africa: Drought, cold, iron toxicity, salinity and sodicity
Maps of abiotic stresses for rice can be useful for (1) prioritizing research and (2) identifying stress hotspots, for directing technologies and varieties to those areas where they are most needed. Large-scale maps of stresses are not available for Africa. This paper considers four abiotic stresses...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Scientific Pub. Co
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848050/ https://www.ncbi.nlm.nih.gov/pubmed/29666552 http://dx.doi.org/10.1016/j.fcr.2018.01.016 |
Sumario: | Maps of abiotic stresses for rice can be useful for (1) prioritizing research and (2) identifying stress hotspots, for directing technologies and varieties to those areas where they are most needed. Large-scale maps of stresses are not available for Africa. This paper considers four abiotic stresses relevant for rice in Africa (drought, cold, iron toxicity and salinity/sodicity). Maps showing hotspots of the stresses, the countries most affected and total potentially affected area are presented. In terms of relative importance, the study identified drought as the most important stress (33% of rice area potentially affected), followed by iron toxicity (12%) and then cold (7%) and salinity/sodicity (2%). Hotspots for iron toxicity, cold and salinity are identified. For drought, local variation along the hydromorphic zone was a stronger determinant than larger-scale climatic variation, therefore mapping of drought based on climatic zones has only limited value. Uncertainties in the mappings are discussed. |
---|