Cargando…

On the Ageing of High Energy Lithium-Ion Batteries—Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes

This paper examines the impact of the characterisation technique considered for the determination of the [Formula: see text] solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galva...

Descripción completa

Detalles Bibliográficos
Autores principales: Capron, Odile, Gopalakrishnan, Rahul, Jaguemont, Joris, Van Den Bossche, Peter, Omar, Noshin, Van Mierlo, Joeri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848873/
https://www.ncbi.nlm.nih.gov/pubmed/29360787
http://dx.doi.org/10.3390/ma11020176
Descripción
Sumario:This paper examines the impact of the characterisation technique considered for the determination of the [Formula: see text] solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. [Formula: see text] diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to [Formula: see text] cm [Formula: see text] ·s [Formula: see text] and [Formula: see text] cm [Formula: see text] ·s [Formula: see text] , respectively. The dependency of the [Formula: see text] diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between [Formula: see text] cm [Formula: see text] ·s [Formula: see text] and [Formula: see text] cm [Formula: see text] ·s [Formula: see text] , while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV.