Cargando…

Effect of Silver-Emitting Filler on Antimicrobial and Mechanical Properties of Soft Denture Lining Material

Colonization of silicone-based soft lining materials by pathogenic yeast-type fungi is a common problem associated with the use of dentures. In this study, silver sodium hydrogen zirconium phosphate (SSHZP) was introduced into polydimethylsiloxane-based material as an antimicrobial filler at concent...

Descripción completa

Detalles Bibliográficos
Autores principales: Jabłońska-Stencel, Ewa, Pakieła, Wojciech, Mertas, Anna, Bobela, Elżbieta, Kasperski, Jacek, Chladek, Grzegorz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849015/
https://www.ncbi.nlm.nih.gov/pubmed/29470441
http://dx.doi.org/10.3390/ma11020318
Descripción
Sumario:Colonization of silicone-based soft lining materials by pathogenic yeast-type fungi is a common problem associated with the use of dentures. In this study, silver sodium hydrogen zirconium phosphate (SSHZP) was introduced into polydimethylsiloxane-based material as an antimicrobial filler at concentrations of 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, and 14% (w/w). The in vitro antimicrobial efficacy was investigated. Candida albicans was used as a characteristic representative of pathogenic oral microflora. Staphylococcus aureus and Escherichia coli were used as the typical Gram-positive and Gram-negative bacterial strains, respectively. The effect of filler addition on the Shore A hardness, tensile strength, tensile bond strength, sorption, and solubility was investigated. An increase in the filler concentration resulted in an increase in hardness, sorption, and solubility, and for the highest concentration, a decrease in bond strength. The favorable combination of antimicrobial efficacy with other properties was achieved at filler concentrations ranging from 2% to 10%. These composites exhibited mechanical properties similar to the material without the antimicrobial filler and enhanced in vitro antimicrobial efficiency.