Cargando…
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction
Associations between microRNAs (miRNAs) and human diseases have been identified by increasing studies and discovering new ones is an ongoing process in medical laboratories. To improve experiment productivity, researchers computationally infer potential associations from biological data, selecting t...
Autores principales: | Chen, Xing, Huang, Li, Xie, Di, Zhao, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849212/ https://www.ncbi.nlm.nih.gov/pubmed/29305594 http://dx.doi.org/10.1038/s41419-017-0003-x |
Ejemplares similares
-
PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences
por: Yan, Cheng, et al.
Publicado: (2020) -
Bioactive Molecule Prediction Using Extreme Gradient Boosting
por: Babajide Mustapha, Ismail, et al.
Publicado: (2016) -
Gradient boosting with extreme-value theory for wildfire prediction
por: Koh, Jonathan
Publicado: (2023) -
Predicting energy use in construction using Extreme Gradient Boosting
por: Han, Jiaming, et al.
Publicado: (2023) -
SSCMDA: spy and super cluster strategy for MiRNA-disease association prediction
por: Zhao, Qi, et al.
Publicado: (2017)