Cargando…
Total glucosides of paeony suppresses experimental autoimmune uveitis in association with inhibition of Th1 and Th2 cell function in mice
Total glucosides of paeony (TGP) are active components extracted from the roots of Paeonia lactiflora Pall. In this study, we investigated the role and mechanisms of TGP in experimental autoimmune uveitis (EAU) model of mice. The C57BL/6 mice were randomly divided into three groups: sham group, EAU-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849247/ https://www.ncbi.nlm.nih.gov/pubmed/29363368 http://dx.doi.org/10.1177/0394632017751547 |
Sumario: | Total glucosides of paeony (TGP) are active components extracted from the roots of Paeonia lactiflora Pall. In this study, we investigated the role and mechanisms of TGP in experimental autoimmune uveitis (EAU) model of mice. The C57BL/6 mice were randomly divided into three groups: sham group, EAU-control group, and EAU-TGP group. Clinical score of images of the eye fundus were taken on 7, 14, 21, and 28 days after induction of EAU. The concentrations of proinflammatory cytokines in intraocular fluid were measured at 14 days after EAU induction with the use of a multiplex assay system. Flow cytometry was used to analyze the frequency of CD4+, CD8+, interferon-gamma (IFN-γ), and CD4+/CD8+ ratio in spleen and lymph nodes. Western blotting was used to measure expressions of mitogen-activated protein kinase (MAPK) pathway-related proteins in retina. Clinical scores for uveitis were lower in TGP-treated EAU mice than those without TGP treatment. Importantly, the concentrations of cytokines induced by T-helper 1 (Th1) and T-helper 2 (Th2) cells in intraocular fluid were reduced in EAU mice treated with TGP. Furthermore, the frequency of CD4+, IFN-γ, and CD4+/CD8+ ratio was decreased and the frequency of CD8+ was increased in spleen and lymph nodes of mice treated with TGP. The anti-inflammatory effects of TGP were mediated by inhibiting the MAPK signaling pathways. Our results showed that TGP suppressed uveitis in mice via the inhibition of Th1 and Th2 cell function. Thus, TGP may be a promising therapeutic strategy for uveitis, as well as other ocular inflammatory diseases. |
---|