Cargando…
A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849341/ https://www.ncbi.nlm.nih.gov/pubmed/29534106 http://dx.doi.org/10.1371/journal.pone.0194289 |
_version_ | 1783306036806942720 |
---|---|
author | Wang, Hsin-Yao Lee, Tzong-Yi Tseng, Yi-Ju Liu, Tsui-Ping Huang, Kai-Yao Chang, Yung-Ta Chen, Chun-Hsien Lu, Jang-Jih |
author_facet | Wang, Hsin-Yao Lee, Tzong-Yi Tseng, Yi-Ju Liu, Tsui-Ping Huang, Kai-Yao Chang, Yung-Ta Chen, Chun-Hsien Lu, Jang-Jih |
author_sort | Wang, Hsin-Yao |
collection | PubMed |
description | Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra. |
format | Online Article Text |
id | pubmed-5849341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58493412018-03-23 A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach Wang, Hsin-Yao Lee, Tzong-Yi Tseng, Yi-Ju Liu, Tsui-Ping Huang, Kai-Yao Chang, Yung-Ta Chen, Chun-Hsien Lu, Jang-Jih PLoS One Research Article Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra. Public Library of Science 2018-03-13 /pmc/articles/PMC5849341/ /pubmed/29534106 http://dx.doi.org/10.1371/journal.pone.0194289 Text en © 2018 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Hsin-Yao Lee, Tzong-Yi Tseng, Yi-Ju Liu, Tsui-Ping Huang, Kai-Yao Chang, Yung-Ta Chen, Chun-Hsien Lu, Jang-Jih A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
title | A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
title_full | A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
title_fullStr | A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
title_full_unstemmed | A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
title_short | A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
title_sort | new scheme for strain typing of methicillin-resistant staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849341/ https://www.ncbi.nlm.nih.gov/pubmed/29534106 http://dx.doi.org/10.1371/journal.pone.0194289 |
work_keys_str_mv | AT wanghsinyao anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT leetzongyi anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT tsengyiju anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT liutsuiping anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT huangkaiyao anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT changyungta anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT chenchunhsien anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT lujangjih anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT wanghsinyao newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT leetzongyi newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT tsengyiju newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT liutsuiping newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT huangkaiyao newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT changyungta newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT chenchunhsien newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach AT lujangjih newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach |