Cargando…

A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach

Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hsin-Yao, Lee, Tzong-Yi, Tseng, Yi-Ju, Liu, Tsui-Ping, Huang, Kai-Yao, Chang, Yung-Ta, Chen, Chun-Hsien, Lu, Jang-Jih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849341/
https://www.ncbi.nlm.nih.gov/pubmed/29534106
http://dx.doi.org/10.1371/journal.pone.0194289
_version_ 1783306036806942720
author Wang, Hsin-Yao
Lee, Tzong-Yi
Tseng, Yi-Ju
Liu, Tsui-Ping
Huang, Kai-Yao
Chang, Yung-Ta
Chen, Chun-Hsien
Lu, Jang-Jih
author_facet Wang, Hsin-Yao
Lee, Tzong-Yi
Tseng, Yi-Ju
Liu, Tsui-Ping
Huang, Kai-Yao
Chang, Yung-Ta
Chen, Chun-Hsien
Lu, Jang-Jih
author_sort Wang, Hsin-Yao
collection PubMed
description Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra.
format Online
Article
Text
id pubmed-5849341
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-58493412018-03-23 A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach Wang, Hsin-Yao Lee, Tzong-Yi Tseng, Yi-Ju Liu, Tsui-Ping Huang, Kai-Yao Chang, Yung-Ta Chen, Chun-Hsien Lu, Jang-Jih PLoS One Research Article Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra. Public Library of Science 2018-03-13 /pmc/articles/PMC5849341/ /pubmed/29534106 http://dx.doi.org/10.1371/journal.pone.0194289 Text en © 2018 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wang, Hsin-Yao
Lee, Tzong-Yi
Tseng, Yi-Ju
Liu, Tsui-Ping
Huang, Kai-Yao
Chang, Yung-Ta
Chen, Chun-Hsien
Lu, Jang-Jih
A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
title A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
title_full A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
title_fullStr A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
title_full_unstemmed A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
title_short A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
title_sort new scheme for strain typing of methicillin-resistant staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849341/
https://www.ncbi.nlm.nih.gov/pubmed/29534106
http://dx.doi.org/10.1371/journal.pone.0194289
work_keys_str_mv AT wanghsinyao anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT leetzongyi anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT tsengyiju anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT liutsuiping anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT huangkaiyao anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT changyungta anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT chenchunhsien anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT lujangjih anewschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT wanghsinyao newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT leetzongyi newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT tsengyiju newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT liutsuiping newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT huangkaiyao newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT changyungta newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT chenchunhsien newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach
AT lujangjih newschemeforstraintypingofmethicillinresistantstaphylococcusaureusonthebasisofmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometrybyusingmachinelearningapproach