Cargando…
Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer
Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849766/ https://www.ncbi.nlm.nih.gov/pubmed/29535384 http://dx.doi.org/10.1038/s41467-018-03283-z |
_version_ | 1783306099610353664 |
---|---|
author | Patel, Nirmesh Weekes, Daniel Drosopoulos, Konstantinos Gazinska, Patrycja Noel, Elodie Rashid, Mamun Mirza, Hasan Quist, Jelmar Brasó-Maristany, Fara Mathew, Sumi Ferro, Riccardo Pereira, Ana Mendes Prince, Cynthia Noor, Farzana Francesch-Domenech, Erika Marlow, Rebecca de Rinaldis, Emanuele Grigoriadis, Anita Linardopoulos, Spiros Marra, Pierfrancesco Tutt, Andrew N. J. |
author_facet | Patel, Nirmesh Weekes, Daniel Drosopoulos, Konstantinos Gazinska, Patrycja Noel, Elodie Rashid, Mamun Mirza, Hasan Quist, Jelmar Brasó-Maristany, Fara Mathew, Sumi Ferro, Riccardo Pereira, Ana Mendes Prince, Cynthia Noor, Farzana Francesch-Domenech, Erika Marlow, Rebecca de Rinaldis, Emanuele Grigoriadis, Anita Linardopoulos, Spiros Marra, Pierfrancesco Tutt, Andrew N. J. |
author_sort | Patel, Nirmesh |
collection | PubMed |
description | Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are integrated and genes scored for pre-specified target features revealing 130 candidate genes. We test functional dependence on each of these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC addiction genes frequently co-upregulated that includes genes regulating cell cycle checkpoints, DNA damage response, and malignant cell selective mitotic genes. We validate the mechanism of addiction to a potential drug target: the mitotic kinesin family member C1 (KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant cells and develop a potential selection biomarker to identify patients with tumors exhibiting centrosome amplification. |
format | Online Article Text |
id | pubmed-5849766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58497662018-03-15 Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer Patel, Nirmesh Weekes, Daniel Drosopoulos, Konstantinos Gazinska, Patrycja Noel, Elodie Rashid, Mamun Mirza, Hasan Quist, Jelmar Brasó-Maristany, Fara Mathew, Sumi Ferro, Riccardo Pereira, Ana Mendes Prince, Cynthia Noor, Farzana Francesch-Domenech, Erika Marlow, Rebecca de Rinaldis, Emanuele Grigoriadis, Anita Linardopoulos, Spiros Marra, Pierfrancesco Tutt, Andrew N. J. Nat Commun Article Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are integrated and genes scored for pre-specified target features revealing 130 candidate genes. We test functional dependence on each of these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC addiction genes frequently co-upregulated that includes genes regulating cell cycle checkpoints, DNA damage response, and malignant cell selective mitotic genes. We validate the mechanism of addiction to a potential drug target: the mitotic kinesin family member C1 (KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant cells and develop a potential selection biomarker to identify patients with tumors exhibiting centrosome amplification. Nature Publishing Group UK 2018-03-13 /pmc/articles/PMC5849766/ /pubmed/29535384 http://dx.doi.org/10.1038/s41467-018-03283-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Patel, Nirmesh Weekes, Daniel Drosopoulos, Konstantinos Gazinska, Patrycja Noel, Elodie Rashid, Mamun Mirza, Hasan Quist, Jelmar Brasó-Maristany, Fara Mathew, Sumi Ferro, Riccardo Pereira, Ana Mendes Prince, Cynthia Noor, Farzana Francesch-Domenech, Erika Marlow, Rebecca de Rinaldis, Emanuele Grigoriadis, Anita Linardopoulos, Spiros Marra, Pierfrancesco Tutt, Andrew N. J. Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
title | Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
title_full | Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
title_fullStr | Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
title_full_unstemmed | Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
title_short | Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
title_sort | integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849766/ https://www.ncbi.nlm.nih.gov/pubmed/29535384 http://dx.doi.org/10.1038/s41467-018-03283-z |
work_keys_str_mv | AT patelnirmesh integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT weekesdaniel integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT drosopouloskonstantinos integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT gazinskapatrycja integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT noelelodie integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT rashidmamun integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT mirzahasan integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT quistjelmar integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT brasomaristanyfara integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT mathewsumi integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT ferroriccardo integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT pereiraanamendes integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT princecynthia integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT noorfarzana integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT franceschdomenecherika integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT marlowrebecca integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT derinaldisemanuele integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT grigoriadisanita integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT linardopoulosspiros integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT marrapierfrancesco integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer AT tuttandrewnj integratedgenomicsandfunctionalvalidationidentifiesmalignantcellspecificdependenciesintriplenegativebreastcancer |