Cargando…
Institutional experience with SRS VMAT planning for multiple cranial metastases
BACKGROUND AND PURPOSE: This study summarizes the cranial stereotactic radiosurgery (SRS) volumetric modulated arc therapy (VMAT) procedure at our institution. MATERIALS AND METHODS: Volumetric modulated arc therapy plans were generated for 40 patients with 188 lesions (range 2–8, median 5) in Eclip...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849827/ https://www.ncbi.nlm.nih.gov/pubmed/29476588 http://dx.doi.org/10.1002/acm2.12284 |
_version_ | 1783306113443168256 |
---|---|
author | Ballangrud, Åse Kuo, Li Cheng Happersett, Laura Lim, Seng Boh Beal, Kathryn Yamada, Yoshiya Hunt, Margie Mechalakos, James |
author_facet | Ballangrud, Åse Kuo, Li Cheng Happersett, Laura Lim, Seng Boh Beal, Kathryn Yamada, Yoshiya Hunt, Margie Mechalakos, James |
author_sort | Ballangrud, Åse |
collection | PubMed |
description | BACKGROUND AND PURPOSE: This study summarizes the cranial stereotactic radiosurgery (SRS) volumetric modulated arc therapy (VMAT) procedure at our institution. MATERIALS AND METHODS: Volumetric modulated arc therapy plans were generated for 40 patients with 188 lesions (range 2–8, median 5) in Eclipse and treated on a TrueBeam STx. Limitations of the custom beam model outside the central 2.5 mm leaves necessitated more than one isocenter pending the spatial distribution of lesions. Two to nine arcs were used per isocenter. Conformity index (CI), gradient index (GI) and target dose heterogeneity index (HI) were determined for each lesion. Dose to critical structures and treatment times are reported. RESULTS: Lesion size ranged 0.05–17.74 cm(3) (median 0.77 cm(3)), and total tumor volume per case ranged 1.09–26.95 cm(3) (median 7.11 cm(3)). For each lesion, HI ranged 1.2–1.5 (median 1.3), CI ranged 1.0–2.9 (median 1.2), and GI ranged 2.5–8.4 (median 4.4). By correlating GI to PTV volume a predicted GI = 4/PTV(0.2) was determined and implemented in a script in Eclipse and used for plan evaluation. Brain volume receiving 7 Gy (V (7 Gy)) ranged 10–136 cm(3) (median 42 cm(3)). Total treatment time ranged 24–138 min (median 61 min). CONCLUSIONS: Volumetric modulated arc therapy provide plans with steep dose gradients around the targets and low dose to critical structures, and VMAT treatment is delivered in a shorter time than conventional methods using one isocenter per lesion. To further improve VMAT planning for multiple cranial metastases, better tools to shorten planning time are needed. The most significant improvement would come from better dose modeling in Eclipse, possibly by allowing for customizing the dynamic leaf gap (DLG) for a special SRS model and not limit to one DLG per energy per treatment machine and thereby remove the limitation on the Y‐jaw and allow planning with a single isocenter. |
format | Online Article Text |
id | pubmed-5849827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58498272018-04-02 Institutional experience with SRS VMAT planning for multiple cranial metastases Ballangrud, Åse Kuo, Li Cheng Happersett, Laura Lim, Seng Boh Beal, Kathryn Yamada, Yoshiya Hunt, Margie Mechalakos, James J Appl Clin Med Phys Radiation Oncology Physics BACKGROUND AND PURPOSE: This study summarizes the cranial stereotactic radiosurgery (SRS) volumetric modulated arc therapy (VMAT) procedure at our institution. MATERIALS AND METHODS: Volumetric modulated arc therapy plans were generated for 40 patients with 188 lesions (range 2–8, median 5) in Eclipse and treated on a TrueBeam STx. Limitations of the custom beam model outside the central 2.5 mm leaves necessitated more than one isocenter pending the spatial distribution of lesions. Two to nine arcs were used per isocenter. Conformity index (CI), gradient index (GI) and target dose heterogeneity index (HI) were determined for each lesion. Dose to critical structures and treatment times are reported. RESULTS: Lesion size ranged 0.05–17.74 cm(3) (median 0.77 cm(3)), and total tumor volume per case ranged 1.09–26.95 cm(3) (median 7.11 cm(3)). For each lesion, HI ranged 1.2–1.5 (median 1.3), CI ranged 1.0–2.9 (median 1.2), and GI ranged 2.5–8.4 (median 4.4). By correlating GI to PTV volume a predicted GI = 4/PTV(0.2) was determined and implemented in a script in Eclipse and used for plan evaluation. Brain volume receiving 7 Gy (V (7 Gy)) ranged 10–136 cm(3) (median 42 cm(3)). Total treatment time ranged 24–138 min (median 61 min). CONCLUSIONS: Volumetric modulated arc therapy provide plans with steep dose gradients around the targets and low dose to critical structures, and VMAT treatment is delivered in a shorter time than conventional methods using one isocenter per lesion. To further improve VMAT planning for multiple cranial metastases, better tools to shorten planning time are needed. The most significant improvement would come from better dose modeling in Eclipse, possibly by allowing for customizing the dynamic leaf gap (DLG) for a special SRS model and not limit to one DLG per energy per treatment machine and thereby remove the limitation on the Y‐jaw and allow planning with a single isocenter. John Wiley and Sons Inc. 2018-02-23 /pmc/articles/PMC5849827/ /pubmed/29476588 http://dx.doi.org/10.1002/acm2.12284 Text en © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Radiation Oncology Physics Ballangrud, Åse Kuo, Li Cheng Happersett, Laura Lim, Seng Boh Beal, Kathryn Yamada, Yoshiya Hunt, Margie Mechalakos, James Institutional experience with SRS VMAT planning for multiple cranial metastases |
title | Institutional experience with SRS VMAT planning for multiple cranial metastases |
title_full | Institutional experience with SRS VMAT planning for multiple cranial metastases |
title_fullStr | Institutional experience with SRS VMAT planning for multiple cranial metastases |
title_full_unstemmed | Institutional experience with SRS VMAT planning for multiple cranial metastases |
title_short | Institutional experience with SRS VMAT planning for multiple cranial metastases |
title_sort | institutional experience with srs vmat planning for multiple cranial metastases |
topic | Radiation Oncology Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849827/ https://www.ncbi.nlm.nih.gov/pubmed/29476588 http://dx.doi.org/10.1002/acm2.12284 |
work_keys_str_mv | AT ballangrudase institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT kuolicheng institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT happersettlaura institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT limsengboh institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT bealkathryn institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT yamadayoshiya institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT huntmargie institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases AT mechalakosjames institutionalexperiencewithsrsvmatplanningformultiplecranialmetastases |