Cargando…

Constitutive ablation of caspase-6 reduces the inflammatory response and behavioural changes caused by peripheral pro-inflammatory stimuli

Traditionally, the family of caspases has been subcategorised according to their respective main roles in mediating apoptosis or inflammation. However, recent studies have revealed that caspases participate in diverse cellular functions beyond their canonical roles. Caspase-6 (C6) is one such protea...

Descripción completa

Detalles Bibliográficos
Autores principales: Ladha, Safia, Qiu, Xiaofan, Casal, Lorenzo, Caron, Nicholas S., Ehrnhoefer, Dagmar E., Hayden, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849887/
https://www.ncbi.nlm.nih.gov/pubmed/29560279
http://dx.doi.org/10.1038/s41420-018-0043-8
Descripción
Sumario:Traditionally, the family of caspases has been subcategorised according to their respective main roles in mediating apoptosis or inflammation. However, recent studies have revealed that caspases participate in diverse cellular functions beyond their canonical roles. Caspase-6 (C6) is one such protease known for its role as a pro-apoptotic executioner caspase and its aberrant activity in several neurodegenerative diseases. In addition to apoptosis, C6 has been shown to regulate B-cell activation and differentiation in plasma cells as well as macrophage activation. Furthermore, C6 has recently been postulated to play a role in mediating the inflammatory response through the production of TNF-α. In this study we further examine the role of C6 in mediating the inflammatory response and its contribution to the manifestation of behavioural abnormalities in mice. We find that C6 is a positive regulator of TNF-α transcription in macrophages and that ablation of C6 reduces lipopolysaccharide (LPS)-induced TNF-α levels in plasma. Furthermore, loss of C6 attenuates LPS-induced behavioural changes in mice and protects neurons from cytokine-mediated toxicity. These data further support the involvement of C6 in the inflammatory response and point to a previously unknown role for C6 in the pathophysiology of depression.