Cargando…

It Takes a Village: Microbial Communities Thrive through Interactions and Metabolic Handoffs

An enduring theme in microbial ecology is the interdependence of microbial community members. Interactions between community members include provision of cofactors, establishment of redox gradients, and turnover of key nutrients to drive biogeochemical cycles. Pathways canonically conducted by isola...

Descripción completa

Detalles Bibliográficos
Autores principales: Hug, Laura A., Co, Rebecca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850073/
https://www.ncbi.nlm.nih.gov/pubmed/29556533
http://dx.doi.org/10.1128/mSystems.00152-17
Descripción
Sumario:An enduring theme in microbial ecology is the interdependence of microbial community members. Interactions between community members include provision of cofactors, establishment of redox gradients, and turnover of key nutrients to drive biogeochemical cycles. Pathways canonically conducted by isolated organisms in laboratory cultures are instead collective products of diverse and interchangeable microbes in the environment. Current sequence-based methods provide unprecedented access to uncultivated microorganisms, allowing prediction of previously cryptic roles in biogeochemical cycles and interactions within communities. A renewed focus on cultivation-based methods is required to test predictions derived from environmental sequence data sets and to address the exponential increase in genes lacking predicted functions. Characterization of enriched microbial consortia to annotate hypothetical proteins and identify previously unknown microbial functions can fundamentally change our understanding of biogeochemical cycles. As we gain understanding of microbial processes and interactions, our capacity to harness microbial activities to address anthropogenic impacts increases.