Cargando…
Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment
The recovery of ancient RNA from archeological material could enable the direct study of microevolutionary processes. Small RNAs are a rich source of information because their small size is compatible with biomolecular preservation, and their roles in gene regulation make them likely foci of evoluti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850308/ https://www.ncbi.nlm.nih.gov/pubmed/28655202 http://dx.doi.org/10.1093/molbev/msx175 |
_version_ | 1783306211920183296 |
---|---|
author | Smith, Oliver Palmer, Sarah A. Clapham, Alan J. Rose, Pamela Liu, Yuan Wang, Jun Allaby, Robin G. |
author_facet | Smith, Oliver Palmer, Sarah A. Clapham, Alan J. Rose, Pamela Liu, Yuan Wang, Jun Allaby, Robin G. |
author_sort | Smith, Oliver |
collection | PubMed |
description | The recovery of ancient RNA from archeological material could enable the direct study of microevolutionary processes. Small RNAs are a rich source of information because their small size is compatible with biomolecular preservation, and their roles in gene regulation make them likely foci of evolutionary change. We present here the small RNA fraction from a sample of archeological barley generated using high-throughput sequencing that has previously been associated with localized adaptation to drought. Its microRNA profile is broadly similar to 19 globally distributed modern barley samples with the exception of three microRNAs (miRNA159, miRNA319, and miR396), all of which are known to have variable expression under stress conditions. We also found retrotransposon activity to be significantly reduced in the archeological barley compared with the controls, where one would expect the opposite under stress conditions. We suggest that the archeological barley’s conflicting stress signals could be the result of long-term adaptation to its local environment. |
format | Online Article Text |
id | pubmed-5850308 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58503082018-03-23 Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment Smith, Oliver Palmer, Sarah A. Clapham, Alan J. Rose, Pamela Liu, Yuan Wang, Jun Allaby, Robin G. Mol Biol Evol Discoveries The recovery of ancient RNA from archeological material could enable the direct study of microevolutionary processes. Small RNAs are a rich source of information because their small size is compatible with biomolecular preservation, and their roles in gene regulation make them likely foci of evolutionary change. We present here the small RNA fraction from a sample of archeological barley generated using high-throughput sequencing that has previously been associated with localized adaptation to drought. Its microRNA profile is broadly similar to 19 globally distributed modern barley samples with the exception of three microRNAs (miRNA159, miRNA319, and miR396), all of which are known to have variable expression under stress conditions. We also found retrotransposon activity to be significantly reduced in the archeological barley compared with the controls, where one would expect the opposite under stress conditions. We suggest that the archeological barley’s conflicting stress signals could be the result of long-term adaptation to its local environment. Oxford University Press 2017-10 2017-06-24 /pmc/articles/PMC5850308/ /pubmed/28655202 http://dx.doi.org/10.1093/molbev/msx175 Text en © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Discoveries Smith, Oliver Palmer, Sarah A. Clapham, Alan J. Rose, Pamela Liu, Yuan Wang, Jun Allaby, Robin G. Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment |
title | Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment |
title_full | Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment |
title_fullStr | Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment |
title_full_unstemmed | Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment |
title_short | Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment |
title_sort | small rna activity in archeological barley shows novel germination inhibition in response to environment |
topic | Discoveries |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850308/ https://www.ncbi.nlm.nih.gov/pubmed/28655202 http://dx.doi.org/10.1093/molbev/msx175 |
work_keys_str_mv | AT smitholiver smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment AT palmersaraha smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment AT claphamalanj smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment AT rosepamela smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment AT liuyuan smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment AT wangjun smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment AT allabyrobing smallrnaactivityinarcheologicalbarleyshowsnovelgerminationinhibitioninresponsetoenvironment |