Cargando…

The Impact of Temperature and Body Size on Fundamental Flight Tone Variation in the Mosquito Vector Aedes aegypti (Diptera: Culicidae): Implications for Acoustic Lures

Aedes aegypti (L.) males use female flight tone as a means of mate localization. By playing the sound of a flying female, males can be attracted to a trap to monitor mosquito populations and the progress of transgenic male releases. However, the female flight tone used to attract males needs to be o...

Descripción completa

Detalles Bibliográficos
Autores principales: Villarreal, Susan M., Winokur, Olivia, Harrington, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850351/
https://www.ncbi.nlm.nih.gov/pubmed/28402550
http://dx.doi.org/10.1093/jme/tjx079
Descripción
Sumario:Aedes aegypti (L.) males use female flight tone as a means of mate localization. By playing the sound of a flying female, males can be attracted to a trap to monitor mosquito populations and the progress of transgenic male releases. However, the female flight tone used to attract males needs to be optimized to maximize trap effectiveness. The fundamental frequency of female flight tone could be influenced by both body size and ambient temperature. However, no analysis yet has considered both the effect of body size and temperature on female flight tone of Ae. aegypti. Here, we present results for both these factors by recording the sounds of free-flying and tethered females across multiple temperature environments and with females reared for small, medium, and large body sizes. We demonstrate that female fundamental frequency is highly dependent on the environmental temperature, increasing ∼8–13 Hz with each °C gain. Body size and whether a female was tethered or free-flying did not impact the relationship between frequency and temperature, although further analysis is warranted. Our study highlights the importance of understanding the relationship between flight tone and temperature, and will inform the design of male mosquito traps.