Cargando…
Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens
The effect of organic acids as an alternative to antibiotics on the performance of broiler chickens was evaluated by meta-analysis, identifying and quantifying the main factors that influence results. A total of 51,960 broilers from 121 articles published between 1991 and 2016 were used. Interaction...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Poultry Science Association, Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850820/ https://www.ncbi.nlm.nih.gov/pubmed/28938776 http://dx.doi.org/10.3382/ps/pex178 |
_version_ | 1783306290580160512 |
---|---|
author | Polycarpo, G. V. Andretta, I. Kipper, M. Cruz-Polycarpo, V. C. Dadalt, J. C. Rodrigues, P. H. M. Albuquerque, R. |
author_facet | Polycarpo, G. V. Andretta, I. Kipper, M. Cruz-Polycarpo, V. C. Dadalt, J. C. Rodrigues, P. H. M. Albuquerque, R. |
author_sort | Polycarpo, G. V. |
collection | PubMed |
description | The effect of organic acids as an alternative to antibiotics on the performance of broiler chickens was evaluated by meta-analysis, identifying and quantifying the main factors that influence results. A total of 51,960 broilers from 121 articles published between 1991 and 2016 were used. Interactions of additives [non-supplemented group (control), organic acids, and growth promoter antibiotics] with microbial challenge (with or without inoculation of pathogenic microorganisms) were studied on performance variables. Moreover, the effects of organic acids, used individually or in blends, were evaluated. Relative values of average daily gain (ADG) and average daily feed intake (ADFI) were obtained in relation to control: ΔADG and ΔADFI, respectively. Analysis of variance-covariance revealed lower ADG with organic acids when compared to antibiotics (P < 0.05). There was a significant interaction between the additives and the challenge on feed conversion ratio (FCR) (P < 0.01) and on viability (P < 0.05). Without challenge, organic acids improved broilers’ FCR (P < 0.01), presenting results similar to antibiotics (P > 0.05). Under challenge, the organic acids were again effective on FCR (−5.67% in relation to control, P < 0.05), but they did not match antibiotics (−13.40% in relation to control, P < 0.01). Viability was improved only under challenge conditions, and only by antibiotics (+4.39% in relation to control, P < 0.05). ADG (P < 0.05) and FCR (P < 0.01) were increased by blends of organic acids, but not by the organic acids used alone (P > 0.05). ADFI and production factor were not influenced by the treatments (P > 0.05). ΔADFI of organic-acid supplemented group showed a linear influence on ΔADG, which increases 0.64% at every 1% increase in ΔADFI. In conclusion, organic acids can be utilized as performance enhancing, but the results are lower than those found with antibiotics, particularly under microbial challenge. The blends of organic acids provide better results than the utilization of one organic acid alone. |
format | Online Article Text |
id | pubmed-5850820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Poultry Science Association, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58508202018-03-23 Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens Polycarpo, G. V. Andretta, I. Kipper, M. Cruz-Polycarpo, V. C. Dadalt, J. C. Rodrigues, P. H. M. Albuquerque, R. Poult Sci Metabolism and Nutrition The effect of organic acids as an alternative to antibiotics on the performance of broiler chickens was evaluated by meta-analysis, identifying and quantifying the main factors that influence results. A total of 51,960 broilers from 121 articles published between 1991 and 2016 were used. Interactions of additives [non-supplemented group (control), organic acids, and growth promoter antibiotics] with microbial challenge (with or without inoculation of pathogenic microorganisms) were studied on performance variables. Moreover, the effects of organic acids, used individually or in blends, were evaluated. Relative values of average daily gain (ADG) and average daily feed intake (ADFI) were obtained in relation to control: ΔADG and ΔADFI, respectively. Analysis of variance-covariance revealed lower ADG with organic acids when compared to antibiotics (P < 0.05). There was a significant interaction between the additives and the challenge on feed conversion ratio (FCR) (P < 0.01) and on viability (P < 0.05). Without challenge, organic acids improved broilers’ FCR (P < 0.01), presenting results similar to antibiotics (P > 0.05). Under challenge, the organic acids were again effective on FCR (−5.67% in relation to control, P < 0.05), but they did not match antibiotics (−13.40% in relation to control, P < 0.01). Viability was improved only under challenge conditions, and only by antibiotics (+4.39% in relation to control, P < 0.05). ADG (P < 0.05) and FCR (P < 0.01) were increased by blends of organic acids, but not by the organic acids used alone (P > 0.05). ADFI and production factor were not influenced by the treatments (P > 0.05). ΔADFI of organic-acid supplemented group showed a linear influence on ΔADG, which increases 0.64% at every 1% increase in ΔADFI. In conclusion, organic acids can be utilized as performance enhancing, but the results are lower than those found with antibiotics, particularly under microbial challenge. The blends of organic acids provide better results than the utilization of one organic acid alone. Poultry Science Association, Inc. 2017-10 2017-07-28 /pmc/articles/PMC5850820/ /pubmed/28938776 http://dx.doi.org/10.3382/ps/pex178 Text en © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. |
spellingShingle | Metabolism and Nutrition Polycarpo, G. V. Andretta, I. Kipper, M. Cruz-Polycarpo, V. C. Dadalt, J. C. Rodrigues, P. H. M. Albuquerque, R. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
title | Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
title_full | Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
title_fullStr | Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
title_full_unstemmed | Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
title_short | Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
title_sort | meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens |
topic | Metabolism and Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850820/ https://www.ncbi.nlm.nih.gov/pubmed/28938776 http://dx.doi.org/10.3382/ps/pex178 |
work_keys_str_mv | AT polycarpogv metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens AT andrettai metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens AT kipperm metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens AT cruzpolycarpovc metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens AT dadaltjc metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens AT rodriguesphm metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens AT albuquerquer metaanalyticstudyoforganicacidsasanalternativeperformanceenhancingfeedadditivetoantibioticsforbroilerchickens |