Cargando…
Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging
BACKGROUND: Unmanned aerial vehicles offer the opportunity for precision agriculture to efficiently monitor agricultural land. A vegetation index (VI) derived from an aerially observed multispectral image (MSI) can quantify crop health, moisture and nutrient content. However, due to the high cost of...
Autores principales: | Khan, Zohaib, Rahimi-Eichi, Vahid, Haefele, Stephan, Garnett, Trevor, Miklavcic, Stanley J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851000/ https://www.ncbi.nlm.nih.gov/pubmed/29563961 http://dx.doi.org/10.1186/s13007-018-0287-6 |
Ejemplares similares
-
Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries
por: Haghighattalab, Atena, et al.
Publicado: (2016) -
High-throughput phenotyping of seminal root traits in wheat
por: Richard, Cecile AI, et al.
Publicado: (2015) -
An Automatic Field Plot Extraction Method From Aerial Orthomosaic Images
por: Khan, Zohaib, et al.
Publicado: (2019) -
Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing
por: Yue, Jibo, et al.
Publicado: (2021) -
Detection and analysis of wheat spikes using Convolutional Neural Networks
por: Hasan, Md Mehedi, et al.
Publicado: (2018)