Cargando…

Zebrafish as models to study ciliopathies of the eye and kidney

Cilia are highly-conserved organelles projecting from the cell surface of nearly every cell type in vertebrates. Ciliary proteins have essential functions in human physiology, particularly in signaling and organ development. As cilia are a component of almost all vertebrate cells, cilia dysfunction...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yi, Su, Yanhui, Lipschutz, Joshua H., Lobo, Glenn P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851006/
https://www.ncbi.nlm.nih.gov/pubmed/29553143
Descripción
Sumario:Cilia are highly-conserved organelles projecting from the cell surface of nearly every cell type in vertebrates. Ciliary proteins have essential functions in human physiology, particularly in signaling and organ development. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that characteristically include, retinal degeneration, renal disease and cerebral anomalies. The terminology “Ciliopathies” refers to inherited human disorders caused by genetic mutations in ciliary genes, leading to cilia dysfunctions that form an important and ever expanding multi-organ disease spectrum. Ciliopathies are a diverse class of congenital diseases, with twenty-four recognized syndromes caused by mutations in at least ninety different genes. In order to start to dissect the phenotypes of each disease associated with ciliary dysfunction it is necessary to understand the mechanisms underlying the phenotype using suitable animal models. Here, we review the advantages of the zebrafish as a vertebrate model for human ciliopathies, with a focus on ciliopathies affecting the eye and the kidney.