Cargando…
Metabolomic Profiling of Human Spermatozoa in Idiopathic Asthenozoospermia Patients Using Gas Chromatography-Mass Spectrometry
The purpose of this study was to describe the first metabolic profile of human sperm cells through the application of an untargeted platform based on gas chromatography-mass spectrometry (GC-MS). Sperm cell samples from patients diagnosed with idiopathic asthenozoospermia (n = 30) and healthy subjec...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851030/ https://www.ncbi.nlm.nih.gov/pubmed/29682560 http://dx.doi.org/10.1155/2018/8327506 |
Sumario: | The purpose of this study was to describe the first metabolic profile of human sperm cells through the application of an untargeted platform based on gas chromatography-mass spectrometry (GC-MS). Sperm cell samples from patients diagnosed with idiopathic asthenozoospermia (n = 30) and healthy subjects (n = 30) were analyzed using a nontargeted metabolomics method based on GC-MS spectroscopy. The mass spectrometric data were collected using multivariate and univariate analyses to identify metabolites related to idiopathic asthenozoospermia. By using metabolomic strategies, we identified 33 metabolites, 27 of which were decreased in the idiopathic asthenozoospermia group compared with the normozoospermic group and six were increased in idiopathic asthenozoospermia. With respect to human sperm cells, some of these metabolites are reported here for the first time. Pathways for nucleoside, amino acid and energy metabolism, and the Krebs cycle were disturbed and were associated with idiopathic asthenozoospermia. The metabolic profiling provides an important first step in studying the pathophysiological mechanisms involved in IAS, and the identified metabolites may become potential biomarkers for its diagnosis and treatment. |
---|