Cargando…
Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism
Valence tautomeric (VT) metal complexes are highly promising bistable molecular compounds for applications as molecular switches in molecular electronics and spintronics. Although VT species can be switched with light, the photoswitching in all reported systems requires very low temperatures (usuall...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851081/ https://www.ncbi.nlm.nih.gov/pubmed/29568417 http://dx.doi.org/10.1039/c5sc00130g |
_version_ | 1783306334593089536 |
---|---|
author | Witt, Alexander Heinemann, Frank W. Khusniyarov, Marat M. |
author_facet | Witt, Alexander Heinemann, Frank W. Khusniyarov, Marat M. |
author_sort | Witt, Alexander |
collection | PubMed |
description | Valence tautomeric (VT) metal complexes are highly promising bistable molecular compounds for applications as molecular switches in molecular electronics and spintronics. Although VT species can be switched with light, the photoswitching in all reported systems requires very low temperatures (usually below 20 K) because photoinduced states are highly unstable at room temperature. The thermal instability hinders any practical application of these complexes in genuine devices. In this report, for the first time we demonstrate photoswitching of VT species and associated magnetic properties at room temperature. The bidirectional photoswitching in solution is due to cis–trans photoisomerizable 4-styrylpyridine ligands deliberately integrated into cobalt dioxolene molecular complexes. The novel type of photoswitching has been coined Ligand-Driven Light-Induced Valence Tautomerism (LD-LIVT). The photoconversion of VT states of 28% has been achieved in solution at room temperature. The photoinduced states show extraordinary thermal stability for hours at room temperature, as compared to common nanoseconds reported previously. The switching proceeds at molecular level with the effective photoswitching rate of 3 × 10(13) molecules per s under our conditions. Consequently, this work may open new horizons in applications of molecular switches based on VT metal complexes in molecular devices functioning at room temperature. |
format | Online Article Text |
id | pubmed-5851081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-58510812018-03-22 Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism Witt, Alexander Heinemann, Frank W. Khusniyarov, Marat M. Chem Sci Chemistry Valence tautomeric (VT) metal complexes are highly promising bistable molecular compounds for applications as molecular switches in molecular electronics and spintronics. Although VT species can be switched with light, the photoswitching in all reported systems requires very low temperatures (usually below 20 K) because photoinduced states are highly unstable at room temperature. The thermal instability hinders any practical application of these complexes in genuine devices. In this report, for the first time we demonstrate photoswitching of VT species and associated magnetic properties at room temperature. The bidirectional photoswitching in solution is due to cis–trans photoisomerizable 4-styrylpyridine ligands deliberately integrated into cobalt dioxolene molecular complexes. The novel type of photoswitching has been coined Ligand-Driven Light-Induced Valence Tautomerism (LD-LIVT). The photoconversion of VT states of 28% has been achieved in solution at room temperature. The photoinduced states show extraordinary thermal stability for hours at room temperature, as compared to common nanoseconds reported previously. The switching proceeds at molecular level with the effective photoswitching rate of 3 × 10(13) molecules per s under our conditions. Consequently, this work may open new horizons in applications of molecular switches based on VT metal complexes in molecular devices functioning at room temperature. Royal Society of Chemistry 2015-08-01 2015-05-22 /pmc/articles/PMC5851081/ /pubmed/29568417 http://dx.doi.org/10.1039/c5sc00130g Text en This journal is © The Royal Society of Chemistry 2015 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Witt, Alexander Heinemann, Frank W. Khusniyarov, Marat M. Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism |
title | Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism
|
title_full | Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism
|
title_fullStr | Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism
|
title_full_unstemmed | Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism
|
title_short | Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism
|
title_sort | bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851081/ https://www.ncbi.nlm.nih.gov/pubmed/29568417 http://dx.doi.org/10.1039/c5sc00130g |
work_keys_str_mv | AT wittalexander bidirectionalphotoswitchingofmagneticpropertiesatroomtemperatureliganddrivenlightinducedvalencetautomerism AT heinemannfrankw bidirectionalphotoswitchingofmagneticpropertiesatroomtemperatureliganddrivenlightinducedvalencetautomerism AT khusniyarovmaratm bidirectionalphotoswitchingofmagneticpropertiesatroomtemperatureliganddrivenlightinducedvalencetautomerism |