Cargando…
Generalising better: Applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies
Many automatic classifiers were introduced to aid inference of phenotypical effects of uncategorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical applications. Lately, several meta-estimators have been proposed that combine different predictors, such as PolyPhen and...
Autores principales: | Korvigo, Ilia, Afanasyev, Andrey, Romashchenko, Nikolay, Skoblov, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851551/ https://www.ncbi.nlm.nih.gov/pubmed/29538399 http://dx.doi.org/10.1371/journal.pone.0192829 |
Ejemplares similares
-
Putting hands to rest: efficient deep CNN-RNN architecture for chemical named entity recognition with no hand-crafted rules
por: Korvigo, Ilia, et al.
Publicado: (2018) -
DEVOUR: Deleterious Variants on Uncovered Regions in Whole-Exome Sequencing
por: Türk, Erdem, et al.
Publicado: (2023) -
GrabBlur - a framework to facilitate the secure exchange of whole-exome and -genome SNV data using VCF files
por: Stade, Björn, et al.
Publicado: (2014) -
Whole-genome sequencing and SNV genotyping of ‘Nebbiolo’ (Vitis vinifera L.) clones
por: Gambino, Giorgio, et al.
Publicado: (2017) -
scSNV: accurate dscRNA-seq SNV co-expression analysis using duplicate tag collapsing
por: Wilson, Gavin W., et al.
Publicado: (2021)