Cargando…
Species distribution modeling based on the automated identification of citizen observations
PREMISE OF THE STUDY: A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. METHODS: We used deep learning techniques to automatically identify opportunistic plant observations made by citizens t...
Autores principales: | Botella, Christophe, Joly, Alexis, Bonnet, Pierre, Monestiez, Pascal, Munoz, François |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851560/ https://www.ncbi.nlm.nih.gov/pubmed/29732259 http://dx.doi.org/10.1002/aps3.1029 |
Ejemplares similares
-
Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection
por: Botella, Christophe, et al.
Publicado: (2020) -
Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment
por: Deneu, Benjamin, et al.
Publicado: (2021) -
Dynamic Species Distribution Modeling Reveals the Pivotal Role of Human-Mediated Long-Distance Dispersal in Plant Invasion
por: Botella, Christophe, et al.
Publicado: (2022) -
A new fine‐grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction
por: Goëau, Hervé, et al.
Publicado: (2020) -
An automated pipeline for supervised classification of petal color from citizen science photographs
por: Perez‐Udell, Rachel A., et al.
Publicado: (2023)