Cargando…
Role of Toll-like receptors and interferon regulatory factors in different experimental heart failure models of diverse etiology: IRF7 as novel cardiovascular stress-inducible factor
Heart failure (HF) is a leading cause of morbidity and mortality in the western world. Although optimal medical care and treatment is widely available, the prognosis of patients with HF is still poor. Toll-like receptors (TLRs) are important compartments of the innate immunity. Current studies have...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851607/ https://www.ncbi.nlm.nih.gov/pubmed/29538462 http://dx.doi.org/10.1371/journal.pone.0193844 |
Sumario: | Heart failure (HF) is a leading cause of morbidity and mortality in the western world. Although optimal medical care and treatment is widely available, the prognosis of patients with HF is still poor. Toll-like receptors (TLRs) are important compartments of the innate immunity. Current studies have identified TLRs as critical mediators in cardiovascular diseases. In the present study, we investigated the involvement of TLRs and interferon (IFN) regulatory factors (IRFs) in different experimental HF models including viral myocarditis, myocardial ischemia, diabetes mellitus, and cardiac hypertrophy. In addition, we investigated for the first time comprehensive TLR and IRF gene and protein expression under basal conditions in murine and human cardiac tissue. We found that Tlr4, Tlr9 and Irf7 displayed highest gene expression under basal conditions, indicating their significant role in first-line defense in the murine and human heart. Moreover, induction of TLRs and IRFs clearly differs between the various experimental HF models of diverse etiology and the concomitant inflammatory status. In the HF model of acute viral-induced myocarditis, TLR and IRF activation displayed the uppermost gene expression in comparison to the remaining experimental HF models, indicating the highest amount of myocardial inflammation in myocarditis. In detail, Irf7 displayed by far the highest gene expression during acute viral infection. Interestingly, post myocardial infarction TLR and IRF gene expression was almost exclusively increased in the infarct zone after myocardial ischemia (Tlr2, Tlr3, Tlr6, Tlr7, Tlr9, Irf3, Irf7). With one exception, Irf3 showed a decreased gene expression in the remote zone post infarction. Finally, we identified Irf7 as novel cardiovascular stress-inducible factor in the pathologically stressed heart. These findings on TLR and IRF function in the inflamed heart highlight the complexity of inflammatory immune response and raise more interesting questions for future investigation. |
---|