Cargando…
Classifying dynamic transitions in high dimensional neural mass models: A random forest approach
Neural mass models (NMMs) are increasingly used to uncover the large-scale mechanisms of brain rhythms in health and disease. The dynamics of these models is dependent upon the choice of parameters, and therefore it is crucial to be able to understand how dynamics change when parameters are varied....
Autores principales: | Ferrat, Lauric A., Goodfellow, Marc, Terry, John R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851637/ https://www.ncbi.nlm.nih.gov/pubmed/29499044 http://dx.doi.org/10.1371/journal.pcbi.1006009 |
Ejemplares similares
-
Global nonlinear approach for mapping parameters of neural mass models
por: Dunstan, Dominic M., et al.
Publicado: (2023) -
Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins
por: Basu, Sankar, et al.
Publicado: (2017) -
Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites
por: Chen, Zhen, et al.
Publicado: (2018) -
Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations
por: Agajanian, Steve, et al.
Publicado: (2019) -
Deep Cooperative Spectrum Sensing Based on Residual Neural Network Using Feature Extraction and Random Forest Classifier
por: Valadão, Myke D. M., et al.
Publicado: (2021)