Cargando…
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
Much of the information the brain processes and stores is temporal in nature—a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recu...
Autores principales: | Goudar, Vishwa, Buonomano, Dean V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851701/ https://www.ncbi.nlm.nih.gov/pubmed/29537963 http://dx.doi.org/10.7554/eLife.31134 |
Ejemplares similares
-
ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS
por: Laje, Rodrigo, et al.
Publicado: (2013) -
A model of temporal scaling correctly predicts that motor timing improves with speed
por: Hardy, Nicholas F., et al.
Publicado: (2018) -
Learning of Temporal Motor Patterns: An Analysis of Continuous Versus Reset Timing
por: Laje, Rodrigo, et al.
Publicado: (2011) -
Encoding time in neural dynamic regimes with distinct computational tradeoffs
por: Zhou, Shanglin, et al.
Publicado: (2022) -
Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
por: Soo, Wayne W.M., et al.
Publicado: (2023)