Cargando…

Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition

The effects of manipulating nitrogen (N) deposition, with the use of a single form of N, on soil enzyme activities have been extensively studied. However, the impacts varying the N type (organic vs. inorganic) on soil hydrolytic enzyme activities have been less studied. We performed a 60 day incubat...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Baoku, Zhang, Junmei, Wang, Chengliang, Ma, Jianying, Sun, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852051/
https://www.ncbi.nlm.nih.gov/pubmed/29540738
http://dx.doi.org/10.1038/s41598-018-22813-9
Descripción
Sumario:The effects of manipulating nitrogen (N) deposition, with the use of a single form of N, on soil enzyme activities have been extensively studied. However, the impacts varying the N type (organic vs. inorganic) on soil hydrolytic enzyme activities have been less studied. We performed a 60 day incubation experiment using saline-alkaline soil. The objectives were to explore how the microbial biomass and enzyme activities respond to a mixed N addition at different inorganic to organic N ratios. The experimental design was full factorial, with two rates of N addition (10 g N m(−2) and 20 g N m(−2)) and four ratios of N addition (inorganic N:organic N = 10:0, 7:3, 3:7, 1:9). The results showed that N addition stimulated enzyme activities involved in C, N and P cycling. Enzyme activities under mixed N addition increased compared to those under single inorganic N addition in most cases. The inorganic to organic N ratios interacted with the N addition rate to affect the enzyme activities. Our results suggest that various N fertilizers, which have different inorganic to organic N ratios, should be applied when evaluating the effects of atmospheric N deposition on the soil microbial enzyme activities and ecosystem structure and function.