Cargando…

Delineation of Novel Autosomal Recessive Mutation in GJA3 and Autosomal Dominant Mutations in GJA8 in Pakistani Congenital Cataract Families

Congenital cataract is a clinically and genetically heterogeneous disease. The present study was undertaken to find the genetic cause of congenital cataract families. DNA samples of a large consanguineous Pakistani family were genotyped with a high resolution single nucleotide polymorphism Illumina...

Descripción completa

Detalles Bibliográficos
Autores principales: Micheal, Shazia, Niewold, Ilse Therésia Gabriëla, Siddiqui, Sorath Noorani, Zafar, Saemah Nuzhat, Khan, Muhammad Imran, Bergen, Arthur A. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852608/
https://www.ncbi.nlm.nih.gov/pubmed/29461512
http://dx.doi.org/10.3390/genes9020112
Descripción
Sumario:Congenital cataract is a clinically and genetically heterogeneous disease. The present study was undertaken to find the genetic cause of congenital cataract families. DNA samples of a large consanguineous Pakistani family were genotyped with a high resolution single nucleotide polymorphism Illumina microarray. Homozygosity mapping identified a homozygous region of 4.4 Mb encompassing the gene GJA3. Sanger sequence analysis of the GJA3 gene revealed a novel homozygous variant c.950dup p.(His318ProfsX8) segregating in an autosomal recessive (AR) manner. The previously known mode of inheritance for GJA3 gene mutations in cataract was autosomal dominant (AD) only. The screening of additional probands (n = 41) of cataract families revealed a previously known mutation c.56C>T p.(Thr19Met) in GJA3 gene. In addition, sequencing of the exon-intron boundaries of the GJA8 gene in 41 cataract probands revealed two additional mutations: a novel c.53C>T p.(Ser18Phe) and a known c.175C>G p.(Pro59Ala) mutation, both co-segregating with the disease phenotype in an AD manner. All these mutations are predicted to be pathogenic by in silico analysis and were absent in the control databases. In conclusion, results of the current study enhance our understanding of the genetic basis of cataract, and identified the involvement of the GJA3 in the disease etiology in both AR and AD manners.