Cargando…

Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice

Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE), scavenge 2,2′-azinobis [3-ethylbenzoth...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jing, Song, Jiajia, Du, Min, Mao, Xueying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852818/
https://www.ncbi.nlm.nih.gov/pubmed/29473848
http://dx.doi.org/10.3390/nu10020242
_version_ 1783306641938055168
author Gao, Jing
Song, Jiajia
Du, Min
Mao, Xueying
author_facet Gao, Jing
Song, Jiajia
Du, Min
Mao, Xueying
author_sort Gao, Jing
collection PubMed
description Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE), scavenge 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS(+)) radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH) on adipose insulin resistance and inflammation induced by high-fat diet (HFD) were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat) for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w.) for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (ipITT) were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance) levels, lowered the area-under-the-curve (AUC) during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1) serine phosphorylation (Ser307, Ser612), enhanced protein kinase B (known as Akt) phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK) and mitogen activated protein kinase (MAPK) signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling pathways in HFD-fed C57BL/6J mice.
format Online
Article
Text
id pubmed-5852818
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-58528182018-03-19 Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice Gao, Jing Song, Jiajia Du, Min Mao, Xueying Nutrients Article Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE), scavenge 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS(+)) radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH) on adipose insulin resistance and inflammation induced by high-fat diet (HFD) were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat) for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w.) for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (ipITT) were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance) levels, lowered the area-under-the-curve (AUC) during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1) serine phosphorylation (Ser307, Ser612), enhanced protein kinase B (known as Akt) phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK) and mitogen activated protein kinase (MAPK) signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling pathways in HFD-fed C57BL/6J mice. MDPI 2018-02-23 /pmc/articles/PMC5852818/ /pubmed/29473848 http://dx.doi.org/10.3390/nu10020242 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gao, Jing
Song, Jiajia
Du, Min
Mao, Xueying
Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice
title Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice
title_full Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice
title_fullStr Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice
title_full_unstemmed Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice
title_short Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice
title_sort bovine α-lactalbumin hydrolysates (α-lah) ameliorate adipose insulin resistance and inflammation in high-fat diet-fed c57bl/6j mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852818/
https://www.ncbi.nlm.nih.gov/pubmed/29473848
http://dx.doi.org/10.3390/nu10020242
work_keys_str_mv AT gaojing bovinealactalbuminhydrolysatesalahameliorateadiposeinsulinresistanceandinflammationinhighfatdietfedc57bl6jmice
AT songjiajia bovinealactalbuminhydrolysatesalahameliorateadiposeinsulinresistanceandinflammationinhighfatdietfedc57bl6jmice
AT dumin bovinealactalbuminhydrolysatesalahameliorateadiposeinsulinresistanceandinflammationinhighfatdietfedc57bl6jmice
AT maoxueying bovinealactalbuminhydrolysatesalahameliorateadiposeinsulinresistanceandinflammationinhighfatdietfedc57bl6jmice