Cargando…

Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes

The incorporation of the one-dimensional carbon nanomaterial carbon nanotubes (CNTs) in poly(methyl methacrylate) (PMMA) was found to successfully develop a resistive switching. It implements memristic characteristics which shift from bistable to tristable memory. The localized current pathways in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Lei, Wen, Dianzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853745/
https://www.ncbi.nlm.nih.gov/pubmed/29462989
http://dx.doi.org/10.3390/nano8020114
Descripción
Sumario:The incorporation of the one-dimensional carbon nanomaterial carbon nanotubes (CNTs) in poly(methyl methacrylate) (PMMA) was found to successfully develop a resistive switching. It implements memristic characteristics which shift from bistable to tristable memory. The localized current pathways in the organic nanocomposite layers for each intermediate resistive state (IRS) are attributed to the trapping mechanism consistent with the fluorescent measurements. Multi-bit organic memories have attracted considerable interest, which provide an effective way to increase the memory density per unit cell area. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems.