Cargando…

White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice

The plastid-encoded RNA polymerase (PEP) plays an important role in the transcription machinery of mature chloroplasts, yet details of its function remain elusive in rice. Here, we identified a novel PEP-associated protein (PAP), WLP2, based on its two allelic white leaf and panicle mutants, wlp2s a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Yusong, Shao, Gaoneng, Qiu, Jiehua, Jiao, Guiai, Sheng, Zhonghua, Xie, Lihong, Wu, Yawen, Tang, Shaoqing, Wei, Xiangjin, Hu, Peisong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853965/
https://www.ncbi.nlm.nih.gov/pubmed/29045742
http://dx.doi.org/10.1093/jxb/erx332
Descripción
Sumario:The plastid-encoded RNA polymerase (PEP) plays an important role in the transcription machinery of mature chloroplasts, yet details of its function remain elusive in rice. Here, we identified a novel PEP-associated protein (PAP), WLP2, based on its two allelic white leaf and panicle mutants, wlp2s and wlp2w. The two mutants were albino lethal at high temperatures and showed decreased chlorophyll accumulation, abnormal chloroplast ultrastructure, and attenuated photosynthetic activity. Map-based cloning suggested that WLP2 encodes a putative pfkB-type carbohydrate kinase family protein, which is homologous to fructokinase-like 1 (AtFLN1) in Arabidopsis. WLP2 is mainly expressed in green tissues and its protein localizes in chloroplasts. Expression levels of PEP-encoded genes, chloroplast development genes and photosynthesis-related genes were compromised in wlp2 mutants, indicating that WLP2 is essential for normal chloroplast biogenesis. Moreover, WLP2 and its paralog OsFLN2 can physically interact with thioredoxin OsTRXz to form a TRX-FLN regulatory module, which not only regulates transcription of the PEP-encoded genes but also maintains the redox balance in chloroplasts under heat stress. Furthermore, the wlp2w mutant gene represents a potential advantage in enhancing seed purity and high-throughput breeding. Our results strongly indicate that WLP2 protects chloroplast development from heat stress via a TRX-FLN regulatory module in rice.