Cargando…
High-dimensional regression analysis links magnetic resonance imaging features and protein expression and signaling pathway alterations in breast invasive carcinoma
BACKGROUND: Imaging features derived from MRI scans can be used for not only breast cancer detection and measuring disease extent, but can also determine gene expression and patient outcomes. The relationships between imaging features, gene/protein expression, and response to therapy hold potential...
Autores principales: | Lehrer, Michael, Bhadra, Anindya, Aithala, Sathvik, Ravikumar, Visweswaran, Zheng, Youyun, Dogan, Basak, Bonaccio, Emerlinda, Burnside, Elizabeth S., Morris, Elizabeth, Sutton, Elizabeth, Whitman, Gary J., Net, Jose, Brandt, Kathy, Ganott, Marie, Zuley, Margarita, Rao, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854291/ https://www.ncbi.nlm.nih.gov/pubmed/29556516 http://dx.doi.org/10.18632/oncoscience.397 |
Ejemplares similares
-
Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes
por: Sutton, Elizabeth J., et al.
Publicado: (2017) -
Multiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade glioma
por: Lehrer, Michael, et al.
Publicado: (2017) -
Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set
por: Li, Hui, et al.
Publicado: (2016) -
An Example of Breast Cancer Regression on Imaging
por: Burnside, Elizabeth S., et al.
Publicado: (2015) -
Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma
por: Narang, Shivali, et al.
Publicado: (2017)