Cargando…

Chromatin immunoprecipitation (ChIP) method for non-model fruit flies (Diptera: Tephritidae) and evidence of histone modifications

Interactions between DNA and proteins located in the cell nucleus play an important role in controlling physiological processes by specifying, augmenting and regulating context-specific transcription events. Chromatin immunoprecipitation (ChIP) is a widely used methodology to study DNA-protein inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagalingam, Kumaran, Lorenc, Michał T., Manoli, Sahana, Cameron, Stephen L., Clarke, Anthony R., Dudley, Kevin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854383/
https://www.ncbi.nlm.nih.gov/pubmed/29543899
http://dx.doi.org/10.1371/journal.pone.0194420
Descripción
Sumario:Interactions between DNA and proteins located in the cell nucleus play an important role in controlling physiological processes by specifying, augmenting and regulating context-specific transcription events. Chromatin immunoprecipitation (ChIP) is a widely used methodology to study DNA-protein interactions and has been successfully used in various cell types for over three decades. More recently, by combining ChIP with genomic screening technologies and Next Generation Sequencing (e.g. ChIP-seq), it has become possible to profile DNA-protein interactions (including covalent histone modifications) across entire genomes. However, the applicability of ChIP-chip and ChIP-seq has rarely been extended to non-model species because of a number of technical challenges. Here we report a method that can be used to identify genome wide covalent histone modifications in a group of non-model fruit fly species (Diptera: Tephritidae). The method was developed by testing and refining protocols that have been used in model organisms, including Drosophila melanogaster. We demonstrate that this method is suitable for a group of economically important pest fruit fly species, viz., Bactrocera dorsalis, Ceratitis capitata, Zeugodacus cucurbitae and Bactrocera tryoni. We also report an example ChIP-seq dataset for B. tryoni, providing evidence for histone modifications in the genome of a tephritid fruit fly for the first time. Since tephritids are major agricultural pests globally, this methodology will be a valuable resource to study taxa-specific evolutionary questions and to assist with pest management. It also provides a basis for researchers working with other non-model species to undertake genome wide DNA-protein interaction studies.