Cargando…

Resolving the complete genome of Kuenenia stuttgartiensis from a membrane bioreactor enrichment using Single-Molecule Real-Time sequencing

Anaerobic ammonium-oxidizing (anammox) bacteria are a group of strictly anaerobic chemolithoautotrophic microorganisms. They are capable of oxidizing ammonium to nitrogen gas using nitrite as a terminal electron acceptor, thereby facilitating the release of fixed nitrogen into the atmosphere. The an...

Descripción completa

Detalles Bibliográficos
Autores principales: Frank, Jeroen, Lücker, Sebastian, Vossen, Rolf H. A. M., Jetten, Mike S. M., Hall, Richard J., Op den Camp, Huub J. M., Anvar, Seyed Yahya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854607/
https://www.ncbi.nlm.nih.gov/pubmed/29545612
http://dx.doi.org/10.1038/s41598-018-23053-7
Descripción
Sumario:Anaerobic ammonium-oxidizing (anammox) bacteria are a group of strictly anaerobic chemolithoautotrophic microorganisms. They are capable of oxidizing ammonium to nitrogen gas using nitrite as a terminal electron acceptor, thereby facilitating the release of fixed nitrogen into the atmosphere. The anammox process is thought to exert a profound impact on the global nitrogen cycle and has been harnessed as an environment-friendly method for nitrogen removal from wastewater. In this study, we present the first closed genome sequence of an anammox bacterium, Kuenenia stuttgartiensis MBR1. It was obtained through Single-Molecule Real-Time (SMRT) sequencing of an enrichment culture constituting a mixture of at least two highly similar Kuenenia strains. The genome of the novel MBR1 strain is different from the previously reported Kuenenia KUST reference genome as it contains numerous structural variations and unique genomic regions. We find new proteins, such as a type 3b (sulf)hydrogenase and an additional copy of the hydrazine synthase gene cluster. Moreover, multiple copies of ammonium transporters and proteins regulating nitrogen uptake were identified, suggesting functional differences in metabolism. This assembly, including the genome-wide methylation profile, provides a new foundation for comparative and functional studies aiming to elucidate the biochemical and metabolic processes of these organisms.