Cargando…
Cascaded neural networks improving fish species prediction accuracy: the role of the biotic information
Species distribution is the result of complex interactions that involve environmental parameters as well as biotic factors. However, methodological approaches that consider the use of biotic variables during the prediction process are still largely lacking. Here, a cascaded Artificial Neural Network...
Autores principales: | Franceschini, Simone, Gandola, Emanuele, Martinoli, Marco, Tancioni, Lorenzo, Scardi, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854617/ https://www.ncbi.nlm.nih.gov/pubmed/29545613 http://dx.doi.org/10.1038/s41598-018-22761-4 |
Ejemplares similares
-
An ecologically constrained procedure for sensitivity analysis of Artificial Neural Networks and other empirical models
por: Franceschini, Simone, et al.
Publicado: (2019) -
Dataset exploited for the development and validation of automated cyanobacteria quantification algorithm, ACQUA
por: Gandola, Emanuele, et al.
Publicado: (2016) -
Balancing selection, genetic drift, and human‐mediated introgression interplay to shape MHC (functional) diversity in Mediterranean brown trout
por: Talarico, Lorenzo, et al.
Publicado: (2021) -
Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal
por: Pulcini, Domitilla, et al.
Publicado: (2020) -
Rapid biotic homogenization of marine fish assemblages
por: Magurran, Anne E., et al.
Publicado: (2015)